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a b s t r a c t

Exact solutions are given for the transient temperature in flux-base fins with the method of Green’s func-
tions (GF) in the form of infinite series for three different tip conditions. The speed of convergence is
improved by replacing the steady part by a closed-form steady solution. For the insulated-tip case, a
quasi-steady solution is presented. Numerical values are presented and the conditions under which
the quasi-steady solution is accurate are determined. An experimental example is given for estimation
of the heat transfer coefficient (HTC) on a non-rotating roller bearing, in which the outer bearing race
is treated as a transient fin.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The transient response of fins is important in a wide range of
engineering devices including heat exchangers, clutches, motors
and so on. The authors’ interest in this topic grew out of analysis
of transient data for determination of surface heat transfer coeffi-
cients on railroad roller bearings, in which the outer race of the
bearing is treated as a fin. Next a review of literature is given in
the areas of transient fins and in transient experiments for estima-
tion of heat transfer coefficients.

There are several papers on transient heat transfer in fins, start-
ing with Chapman [1] who studied the transient behavior of an
annular fin of uniform thickness subjected to a sudden step change
in the base temperature. His interest in circular annular fins
stemmed from the numerous applications of these types of fins,
especially on cylinders of air-cooled internal combustion engines.
Chapman developed equations that give the temperature distribu-
tion within the fin, the heat removed from the source, and the heat
dissipated to the surroundings, all as functions of time. He also pre-
sents his equations in graphical form for the use of design engi-
neers. Donaldson and Shouman [2] studied the transient
temperature distribution in a convecting straight fin of constant
area for two distinct cases, namely, a step change in base temper-
ature, and a step change in base heat flow rate. The tip of the fin is
insulated. The authors developed the equations for the transient
temperature distribution and the heat flow rate for the two afore-
mentioned cases, and present their results graphically. Also in-
ll rights reserved.

: +1 402 472 1465.
cluded is a summary of their experimental work to verify their
results for the case of a step function in heat flow rate. In a series
of papers, Suryanarayana [3,4] also studied the transient response
of straight fins of constant cross-sectional area. However, rather
than using the separation of variables technique followed by Don-
aldson and Shouman, he utilized the Laplace transforms in order to
develop the solutions for small and large values of time when the
base of the fin is subjected to a step change in temperature or heat
flux. The tip of the fin is insulated. In addition, the use of the La-
place transforms made it easier for Suryanarayana to develop solu-
tions for the case of a fin subjected to a sinusoidal temperature or
heat flux at its base. His second paper on the subject provided an
analysis of the heat transfer that takes place from one fluid to an-
other separated by a solid boundary with fins on one side. Mao and
Rooke [5] also used the Laplace transform method to study straight
fins with three different transients: a step change in base temper-
ature; a step change in base heat flux; and, a step change in fluid
temperature.

Transient fins of constant cross-section have also been studied
with the method of Green’s functions [6, pp. 60–64], a flexible
and powerful approach that are applicable to any combination of
end conditions on the fin. Kim [7] developed an approximate solu-
tion to the transient heat transfer in straight fins of constant cross-
sectional area and constant physical and thermal properties. The
author utilized the Kantorovich method in the variational formula-
tion to provide a simpler expression of the exact form of the
solution.

In some fin applications, Newton’s law of cooling is not applica-
ble, and a power-law type dependence of convective heat flux on
temperature better describes the cooling process. Such cases in-
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Nomenclature

Ah surface area of fin for convection (m2)
Bi Biot number, hiðV=AhÞ=k
B2 Biot number, hL=k
G Green’s function
h heat transfer coefficient (W m�2 K�1)
k thermal conductivity (W m�1 K�1)
L length of fin (m)
Nn norm, Eq. (31) (m)
m fin parameter, Eq. (1), (m�1)
M dimensionless fin parameter = mL
qo heat flux (W m�2)
Q input heat (W)
T temperature (K)
t time (s)
V fin volume (m3)

W transformed temperature, Eq. (25)

Greek
a thermal diffusivity (m2 s�1)
bn eigenvalue, Eq. (31)
d cylindrical shell thickness, m
h dimensionless temperature
n dimensionless x-coordinate
s dimensionless time

Superscripts
L lumped capacitance
q quasi-steady
s steady-state
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clude cooling of fins due to film boiling, natural convection, nucle-
ate boiling, and radiation to space at absolute zero. Aziz and Na [8]
considered the transient response of a semi-infinite fin of uniform
thickness, initially at the ambient temperature, subjected to a step
change in temperature at its base, with fin cooling governed by a
power-law type dependence on temperature difference. The choice
of a semi-infinite geometry enabled the transformation of the gov-
erning nonlinear partial differential equations into a sequence of
similarity type linear perturbation equations. Aziz and Na also dis-
cussed the applicability of the results to finite fins.

Aziz and Kraus [9] present a variety of analytical results for
transient fins, developed by separation of variable and Laplace
transform techniques. Results discussed include rectangular fins
with three different base conditions, rectangular fins with power-
law convective heat loss, and radial fins, along with several specific
examples. Aziz and Kraus also present a comprehensive literature
review. The material on transient fins of constant cross-section is
also included in a book by Kraus, Aziz and Welty [10, chap. 16].

The work discussed so far has focused on the transient response
of fins of simple geometry such as circular annular fins and straight
fins. In addition, several simplifying assumptions were utilized
such as uniform thickness, constant cross-sectional area, semi-infi-
nite length, insulated tip, and small fin thickness-to-length ratio to
ensure one-dimensional heat conduction. Recently, work has in-
cluded fins of various shapes and cross-sections, two- and three-
dimensional heat transfer, and practical applications of finned heat
exchangers. Tseng et al. [11] analyzed the transient heat transfer in
two-dimensional straight fins of various shapes subjected at their
base to a decayed exponential function of time in heat flux. The lat-
ter authors used Laplace transforms and integral methods to obtain
solutions. The same solution technique was also utilized by Cheng
and Chen [12] to study the transient response of annular fins of
various shapes exposed to specified heat flux at the base. The
shapes studied were fins with rectangular, triangular, and para-
bolic profiles. Approximate treatment of two-dimensional heat
conduction in short rectangular fins was carried out by Ju et al.
[13] with a perturbation technique, by Onur [14] with an averaging
technique, and by Singh [15] by a variational method. These stud-
ies account for cross-axis heat conduction in short fins.

Campo and Salazar [16] explored the analogy between the tran-
sient conduction in a planar slab for short times and the steady-
state conduction in a straight fin of uniform cross-section. They
made use of a hybrid computational method, known as the Trans-
versal Method Of Lines (TMOL), to arrive at approximate analytical
solutions of the unsteady-state heat conduction equation for short
times in a plane having a uniform initial temperature and sub-
jected to a Dirichlet boundary condition. The resulting solutions
are suitable for obtaining quality short-time temperature distribu-
tions within the slab when it is subjected to a Dirichlet boundary
condition, or a Robin boundary condition for which the convective
heat transfer coefficient is very large and/or the thermal conductiv-
ity of the slab material is very small. In an application type study,
Saha and Acharya [17] conducted a detailed parametric analysis of
the unsteady three-dimensional flow and heat transfer in a pin-fin
heat exchanger. The work was motivated by the desire to enhance
the performance of compact heat exchangers, which are designed
to provide high heat transfer surface area per unit volume and to
alter the fluid dynamics to enhance mixing. There have been sev-
eral numerical studies of transient fins combined with complicat-
ing factors, such as natural convection [18,19], spatial arrays of
fins [20–22], and phase change materials [23].

There are few publications on transient experiments for deter-
mining heat transfer coefficients in fins. Mutlu and Al-Shemmeri
[24] studied a longitudinal array of straight fins suddenly heated
at the base. The instantaneous heat transfer coefficient was found
at one point on the fin as a ratio of the measured temperature to
the measured heat flux. There are several papers on inverse tech-
niques for determination of heat transfer coefficient from temper-
atures measured in compact bodies suddenly placed in a
convection environment [25–29]. In these studies, the heat trans-
fer coefficient is found from a systematic comparison between
the transient data and a mathematical model of the heat conduc-
tion in the body of interest.

The purpose of this paper is to introduce numerically efficient
solutions for the transient heat transfer in flux-base fins. The con-
tributions of this paper are: first, a unified presentation of tran-
sient-fin solutions for three different tip conditions; second,
improvement of convergence of the series solutions; and third,
for the insulated-tip case, introduction of a closed-form quasi-stea-
dy solution. The usefulness of the quasi-steady solution is demon-
strated by a comparison with experimental data. The paper is
divided into sections on the exact transient solution, improvement
of series convergence, the quasi-steady solution, an experimental
example, and conclusions.

2. Exact solutions for flux-base fins

Traditional fin analysis describes a long, thin, high-conductivity
body with a specified temperature on one end and a convection
condition over the surface. The temperature distribution in the
fin depends on the competing effects of conduction along the fin
and convection from the surface of the fin.
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In this section, we present solutions for the transient tempera-
ture in flux-base fins. Consider a straight fin initially in equilibrium
with the surrounding fluid environment at temperature Te. The fin
has a constant cross-sectional area, but may be of any shape (pin,
rectangular, etc.). For time t > 0 a steady heat flux is applied to
the base of the fin. The temperature in the fin satisfies the follow-
ing equations

o2T
ox2 �m2ðT � TeÞ ¼

1
a

oT
ot

; 0 < x < L ð1Þ

at t ¼ 0; Tðx; 0Þ � Te ¼ 0 ð2Þ

at x ¼ 0; �k
oT
ox
¼ qo ð3Þ

at x ¼ L; k2
oT
ox
þ h2ðT � TeÞ ¼ 0 ð4Þ

Quantity m is the fin parameter given by m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hAh=ðkVÞ

p
. The

boundary condition at x ¼ L is a general condition that represents
one of three different tip conditions for the fin. For a tip condi-
tion of the first kind, setting k2 ¼ 0 and h2 ¼ 1 represents a spec-
ified end temperature (at T ¼ Te). For a tip condition of the
second kind, setting k2 ¼ k and h2 ¼ 0 represents an insulated-
end condition. For a tip condition of the third kind, setting
k2 ¼ k represents convection at x ¼ L. It is not necessary that
the convective coefficient at the end of the fin be the same as
that along the sides of the fin (i.e. h2–h in general), but often
h2 ¼ h is used.

The details of the unified solution, for all tip conditions, are
given in Appendix A. Here, the results will be written out for
three tip conditions. For the temperature-end condition (first
kind),

Tðx;tÞ�Te¼2
qoL
k

X1
n¼1

cosðbnx=LÞ
m2L2þb2

n

� 1�exp � m2L2þb2
n

� �
at=L2

h ih i
where bn¼ðn�1=2Þp; ð5Þ

for the insulated-end condition (second kind),

Tðx; tÞ � Te ¼
qoL
k
ð1� e�m2atÞ

m2L2

þ 2
qoL
k

X1
n¼1

cos bnx=Lð Þ
m2L2 þ b2

n

1� exp �ðm2L2 þ b2
nÞat=L2

h ih i
where bn ¼ np;

ð6Þ

and, for the convection-end condition (third kind),

Tðx; tÞ � Te ¼ 2
qoL
k

X1
n¼1

b2
n þ B2

2

b2
n þ B2

2 þ B2

 !
cosðbnx=LÞ
m2L2 þ b2

n

� 1� exp½�ðm2L2 þ b2
nÞat=L2�

h i
where b satisfies bn tan bn ¼ B2

ð7Þ

and where B2 ¼ h2L=k.
Each solution contains a series that should be considered in two

parts: a transient part with an exponential factor; and, a steady
part with no exponential factor. Each of the transient series con-
tains an exponential factor with argument ðm2L2 þ b2

nÞat=L2, which
defines the rate of decay of the transient. The decay rate depends
on fin effects (through m2L2) and also on the tip condition (through
b2

n).
The steady part of the series converges slowly in each case, on

the order of 1=ðn2p2Þ. Many terms of the series must be evaluated
for accurate numerical values, requiring potentially long com-
puter-evaluation times. In the next section, the convergence speed
of the exact solution is improved by replacing the steady series
with a fully summed form.
3. Improvement of series convergence

It has long been known that classic solutions for the tempera-
ture in a body heated on a boundary contain a slowly converging
steady-state series [30]. In this section, the convergence of the
transient solution is improved by replacing the steady series by a
fully summed form. Although the steady-fin solutions are well
known, a unified solution is presented with the method of Green’s
functions.

The steady temperature satisfies the following equations:

o2T
ox2 �

hAh

kV
ðT � TeÞ ¼0; 0 < x < L ð8Þ

at x ¼ 0;� k
oT
ox
¼ qo ð9Þ

at x ¼ L; k2
oT
ox
þ h2ðT � TeÞ ¼ 0 ð10Þ

Again, the boundary condition at x ¼ L represents three kinds of tip
conditions. Using the method of Green’s functions, the steady-fin
temperature has the form [31]

TðxÞ � Te ¼
qo

k
GX2Jðx; x0 ¼ 0Þ ð11Þ

The symbol for Green’s function GX2J denotes a Cartesian coordinate
system (symbol X), boundary of the second kind at x ¼ 0 (symbol 2),
and boundary of type J at x ¼ L (symbol J) for J ¼ 1, 2, or 3. This
numbering system is used to catalog the many GF available on
the GF Library web site [32].

Green’s function GX2J for the steady-fin is given by

GX2Jðx; x0Þ ¼ R e�mð2L�jx�x0 jÞ þ e�mð2L�x�x0 Þ� �
=D

þ e�mjx�x0 j þ e�mðxþx0Þ� �
=D

where D ¼ 2mð1� R � e�2mLÞ
ð12Þ

Coefficient R is determined by the tip condition:

R ¼
�1; type 1 at x ¼ L
1; type 2 at x ¼ L
mL�B2
mLþB2

; type 3 at x ¼ L

8><
>: ð13Þ

and where B2 ¼ h2L=k.
The above GF may be evaluated at x0 ¼ 0 and substituted into

the above temperature expression, Eq. (11), to give

TðxÞ � Te ¼
qoL
k

R � e�mð2L�xÞ þ e�mx
� �

mLð1� R � e�2mLÞ ð14Þ

where coefficient R is given above.
Alternately, steady-fin solutions may be obtained from com-

puter program TFIN described previously [31] that produces ana-
lytical expressions for the steady temperature in fins under a
variety of boundary conditions. Program TFIN is also available for
download at the Green’s Function Library [32].

Next the closed-form steady solutions given above are used in
the transient-fin solutions given earlier to replace the slowly con-
verging series. The improved-convergence form of the transient
temperature in flux-base fins are given by: for the temperature
tip condition (first kind),

Tðx; tÞ � Te ¼
qoL
k

e�mx � e�mð2L�xÞ� �
mLð1þ e�2mLÞ

� 2
qoL
k

X1
n¼1

cosðbnx=LÞ
m2L2 þ b2

n

exp � m2L2 þ b2
n

� �
at=L2

h i
where bn ¼ ðn� 1=2Þp;

ð15Þ

for insulated-tip condition (second kind),



Fig. 1. Temperature distribution in a fin of constant cross-section for both quasi-
steady theory and exact theory for M ¼ 1 at dimensionless times 0.2, 1.0 and 5.0.
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Tðx; tÞ � Te ¼
qoL
k

e�mð2L�xÞ þ e�mx
� �

mLð1� e�2mLÞ

� qoL
k

e�m2at

m2L2 � 2
qoL
k

X1
n¼1

cosðbnx=LÞ
m2L2 þ b2

n

� exp � m2L2 þ b2
n

� �
at=L2

h i
where bn ¼ np;

ð16Þ

and, for the convection tip condition (third kind),

Tðx; tÞ � Te ¼
qoL
k

mL�B2
mLþB2

e�mð2L�xÞ þ e�mx
� �

mLð1� mL�B2
mLþB2

e�2mLÞ

� 2
qoL
k

X1
n¼1

b2
n þ B2

2

b2
n þ B2

2 þ B2

 !
cosðbnx=LÞ
m2L2 þ b2

n

� exp � m2L2 þ b2
n

� �
at=L2

h ih i
where b satisfies bn tan bn ¼ B2

ð17Þ

and where B2 ¼ h2L=k.
It is instructive to examine these three temperature solutions as

a group. Each contains a steady term, and each contains a transient
series term. However, the insulated-tip solution uniquely contains
another term, a non-series transient. The significance of this non-
series transient term will be addressed in the next section.

4. Quasi-steady solution

The insulated-tip fin is of interest for our particular application.
The exact temperature expression for this case contains three
terms (not two): a steady term, a series term, and a non-series
transient term. The series contains an exponential factor with
argument ðm2at þ b2

nat=L2Þ and the non-series transient contains
an exponential factor with smaller argument ðm2atÞ. By comparing
these arguments, it is clear that as time increases the series term
will decay more rapidly. This suggests that a quasi-steady solution
may be constructed of the form

Tqðx; tÞ ¼ TsðxÞ þ TLðtÞ ð18Þ

Here, Ts is the steady solution and TL is the non-series transient
term from Eq. (16). Symbol TL is used to denote ‘‘lumped-capaci-
tance”, because the non-series transient term is identical to the
transient portion of a lumped-capacitance model. Mathematically,
there is another view of term TL. This term arises from that por-
tion of the Green’s function associated with the zero eigenvalue,
bn ¼ 0, so that TL is the n ¼ 0 term of the transient series for the
fin temperature. In this view, the quasi-steady approximation is
akin to the one-term transient solutions in compact bodies charted
many years ago by Heisler [33]. Unlike the Heisler solutions, how-
ever, for transient fins there is a spatially varying steady-state
solution, and because of the zero eigenvalue, term TL is a function
of time only.

The quasi-steady solution is an easily computed algebraic
expression, containing no infinite series. Based on the above dis-
cussion of exponential arguments, the quasi-steady solution
should be accurate for later time. The numerical results given in
the next section are presented with the following dimensionless
variables:

h ¼ T � Te

qoL=k
; n ¼ x=L; s ¼ at=L2

M ¼
ffiffiffiffiffi
Bi
p L

V=Ah

� �
; Bi ¼ hðV=AhÞ

k
ð19Þ

Here, M is the dimensionless fin parameter. With these parameters,
the dimensionless quasi-steady temperature is given by
hqðn; sÞ ¼ e�2MeMn þ e�Mn

Mð1� e�2MÞ �
e�M2s

M2 : ð20Þ

and the (dimensionless) exact fin temperature from Eq. (6) is given
by

hðn; sÞ ¼ 1
M2 ð1� e�M2sÞ þ 2

X1
n¼1

1� exp½�ðM2 þ n2p2Þs�
M2 þ n2p2

cosðnpnÞ
" #

ð21Þ
4.1. Accuracy of quasi-steady solution

The quasi-steady solution is compared with the exact transient
solution to determine the conditions under which the quasi-steady
solution is accurate. Fig. 1 shows the (dimensionless) temperature
versus position for three different times, all for fin parameter
M ¼ 1. This plot shows that the temperature distribution has a
similar shape at each time, and the fixed-shape distribution is
shifted upward to higher temperatures as time increases. The qua-
si-steady and exact temperatures agree closely except at early time
(s < 0:2).

Fig. 2 shows the (dimensionless) temperature versus time at
three different positions on the fin, all for M ¼ 1. For s < 0:2 the
quasi-steady theory overestimates the exact values at x=L ¼ 0
and underestimates the exact values at x=L ¼ 1:0. For all locations
the agreement improves as time increases.

Fig. 3 shows temperature versus time at x ¼ 0 for M ¼ 0:2, 1,
and 5. At M ¼ 5 the fin transient ends quickly so that this fin
reaches steady-state at about s ¼ 0:1. As M decreases the temper-
ature distribution takes longer and longer to reach steady-state. Fin
parameter M may be interpreted as a ratio of thermal resistances:
specifically, M2 is the thermal resistance along the fin length di-
vided by the convective thermal resistance from the surface of
the fin. Thus when M is small, the convective thermal resistance
from the surface of the fin is large compared to the thermal resis-
tance along the fin, producing a long, slow transient.

Specific values of the percent error in the quasi-steady theory
are given in Table 1 for several values of dimensionless time and



Fig. 2. Temperature history in a fin of constant cross-section for both quasi-steady
theory and exact theory for M ¼ 1 at locations x=L ¼ 0.0, 0.5 and 1.0.

Fig. 3. Temperature history in a fin of constant cross-section for both quasi-steady
theory and exact theory at location x=L ¼ 0:0 for M ¼ 0.2, 1.0 and 5.0.

Table 1
Percent error in quasi-steady temperature evaluated at x=L ¼ 1:0 for several values of
time s and fin parameter M

s M ¼ 0:1 M ¼ 0:2 M ¼ 0:5 M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4

0.20 45.6969 45.4860 44.0465 39.3820 26.0504 14.0220 6.2012
0.25 17.0646 1.9760 16.3713 14.4189 8.9264 4.2077 1.4755
0.30 7.2802 7.2379 6.9498 6.0235 3.4694 1.4088 .3795
0.35 3.3684 3.3467 3.1989 2.7262 1.4533 .5010 .1011
0.40 1.6443 1.6326 1.5532 1.3007 .6388 .1845 .0274
0.45 .8333 .8268 .7828 .6438 .2900 .0694 .0075
0.50 .4341 .4304 .4055 .3273 .1347 .0264 .0020
1.00 .0013 .0012 .0011 .0007 .0001 .0000 .0000
2.00 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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several values of fin parameter M, all at x=L ¼ 1:0. Table 1 shows
that for M 6 1 the error is less than 4% for dimensionless time
s P 0:35, and the error decreases rapidly as time increases. For
M > 1 the region of small error extends to earlier time, for example
to s P 0:25 at M ¼ 4. Error values for other locations on the fin
(not shown) are smaller than the Table 1 values and have similar
trends. That is, the Table 1 values are worst-case errors, and the
guidelines given above provide higher accuracy at locations
x=L < 1.

A comparison of the computer time needed to evaluate numer-
ical values was carried out between the exact series expression and
the quasi-steady expression. For each expression, the temperature
was computed at 300 locations in the range (0 < x=L < 1), at 300
times in the range (0 < at=L2 < 1), and at fin parameter values
M ¼ 0:2, 1:0, and 5, for a total of 270,000 temperature values. For
this calculation the exact series expression required 92.8 s (for con-
vergence within 10�6) and the quasi-steady expression required
2.8 s, less computer usage by a factor of 33. This calculation was
coded in Fortran 77 under the Solaris operating system running
on a Sun Blade 2000 with dual 900 MHz processors.

4.2. Application to parameter estimation

Next, the use of the quasi-steady expression will be discussed
in light of the motivating application for this work, that of deter-
mining the heat transfer coefficient from experimental tempera-
ture data. This is a parameter estimation problem, in which the
theoretical model is used as part of a data analysis procedure.
Specifically, the sum-of-square error between the theoretical tem-
perature history and the experimentally measured temperature
history is minimized by varying the model parameters (in this
case, the heat transfer coefficient). The heat transfer coefficient
that minimizes the sum-of-square error is the ‘‘best estimate”.
In the minimization process, the model is evaluated over and over
again for different values of the parameters. The computation-
intensive nature of the minimization problem was part of our
motivation in developing the quasi-steady theory reported here.
We were also interested in a model that was easy to implement
and easy to understand.

The quality of an estimate depends on the quality of the data,
and data quality depends on the sensitivity of the data to the
parameter of interest. The sensitivity in this case is the derivative
of temperature with respect to the heat transfer coefficient. We
have computed the normalized sensitivity in the form

X ¼ Bi
oh
oBi

ð22Þ

where Bi is the Biot number (dimensionless heat transfer coeffi-
cient) and h is dimensionless temperature Eq. (21). Fig. 4 shows this
sensitivity at x=L ¼ 0 plotted versus dimensionless time for three
values of fin parameter M. Values at other values of x=L (not shown)
have similar trends. The important information visible in Fig. 4 is
that the sensitivity is larger at large dimensionless times, and con-
sequently experimental data at large times is most important for
successful parameter estimation. The point of the discussion is that
the quasi-steady model, accurate at large dimensionless times, is
perfectly suited to estimation of the heat transfer coefficient in fins.

5. Application to thin cylindrical shell

The theory for a straight fin of constant cross-section may be
extended to include a fin in the form of a thin cylindrical shell.
We use this geometry to describe the heat transfer in the outer



Fig. 4. Normalized sensitivity of temperature to Biot number at x=L ¼ 0:0 for M ¼
0.2, 1.0 and 5.0. The maximum sensitivity occurs at later time for each case.

Fig. 5. Schematic of the railroad roller bearing used for transient heating tests.
Thermocouples 4 through 11 are evenly spaced (every 45 degrees) around the
outside of the outer bearing race (cup). The two heated rollers are adjacent to
thermocouple 4.
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bearing race of railroad roller bearings, the motivating application
for this research.

Consider a cylindrical shell with radius a and thickness d for
which d� a. The coordinate location on the shell is given by angle
/. For a complete shell the domain is ð0 < / < 2pÞ and for a partial
shell the domain is ð0 < / < /0Þ. The transient-fin equation in the
cylindrical shell is given by [6, chap. 8]

1
a2

o2T

o/2 �
hAh

kV
ðT � TeÞ ¼

1
a

oT
ot

; 0 < / < /0 ð23Þ

The thin-shell heat equation may be converted to the straight-fin
equation, discussed earlier, by a simple 1:1 mapping. First let
x ¼ /

/0
L which maps domain ð0 < / < /0Þ onto ð0 < x < LÞ. Then

the radius of the thin shell must be related to the fin length by
L ¼ /0a. Now, rearrange these two relationships in the form
/ ¼ /ox=L and a ¼ L=/0 and replace these for a and / in the diffu-
sion in Eq. (23)

1
a2

o2T

o/2 ¼
1

L2=/2
0

o2T

oðx2/2
0=L2Þ

¼ o2T
ox2 ð24Þ

With this mapping, the diffusion term for the thin cylindrical shell
has been converted into the diffusion term for the straight fin.

6. Transient heating of a static railroad roller bearing

This research is part of a larger study to determine the amount
of heat needed to explain elevated temperatures that are occasion-
ally observed on the outside of railroad roller bearings. In this
section, an experiment is described for transient heating of a
non-rotating bearing, and experimental temperatures are com-
pared to the quasi-steady theory.

A railroad class K (6 1/2 by 12) tapered-roller bearing was used
for the non-rotating transient thermal experiment. Heat was sup-
plied to the bearing by two rollers which contained cartridge-type
electrical-resistance heaters. Type-K thermocouples were mounted
at several locations on the bearing as shown in Fig. 5. A large hose
clamp was used to fix thermocouples 4 through 11 to the outside
of the cup (outer bearing race) at the same axial distance from
the edge of the cup, corresponding to the middle of the hot rollers.
Power was delivered to the two resistance heaters using two vari-
able AC power supplies (variacs). Data acquisition was performed
utilizing the Omega Engineering OMB-ChartScan-1400 data acqui-
sition system equipped with a 16-channel temperature card. The
voltage input to each resistance heater was measured using two
CHY 20 multi-meters connected in parallel.

Each experiment was carried out as follows. First, the data
acquisition system was initiated, and 120 s worth of data were ac-
quired and displayed on-screen to ensure that all thermocouples
read room temperature. Both variacs were then adjusted to the de-
sired power output with the aid of the digital multi-meters. The
voltage and current readings were continuously monitored and re-
corded every hour to obtain an average power input for each of the
two heaters. The data was collected at 1-s intervals, and the data-
acquisition software produced a spreadsheet that consisted of 17
columns of data with the first column containing the time stamp
(at 20-s intervals), and the remaining 16 columns containing the
temperature data (averaged over 20-s intervals) from the 16 ther-
mocouples, respectively. A more complete discussion of the exper-
imental procedure is given elsewhere [34,35].

A comparison between experimental data and the model is
shown in Fig. 6. Experimental thermocouple data are shown for
thermocouples 6, 7, and 8 corresponding to locations 90 degrees,
135 degrees, and 180 degrees from the heating location. For the
model, the suddenly applied heat was taken to be introduced at
/ ¼ 0 and location / ¼ 180 degrees was treated as the insulated-
end of the fin, by symmetry. Model values used to describe the
hardened steel cup are given in Table 3. The best-fit value of the
heat transfer coefficient, h = 27.2 W m�1 K�1, was found by a
least-square regression between the transient data and the model,
carried out with the regression tool from a widely available spread-
sheet program. Because the quasi-steady model is not accurate at
early time, data for the curve fit was limited to t > 1140 s
(s > 0:12). Fig. 6 shows that the quasi-steady model provides a rea-
sonable fit to the experimental data in this time range.



Fig. 6. Data from thermocouples 6, 7, and 8 for transient heating of a static bearing,
and quasi-steady theory at locations / ¼ 90, 135, and 180 degrees. The best-fit
value of the heat transfer coefficient is 27.2 W m�2 K�1.

Table 3
Parameters for the outer bearing cup used for computing model values

Parameter Value

aa 1.42ð10�5Þ m2 s�1

ka 51.2 W/m/K
L 0.373 m
d 0.01125 m
Ah 0.1265 m2

V 0.001469 m3

a Evaluated at 60 �C.

Table 2
Norm and eigenvalues or conditions

Case L
Nn

bn or eigencondition

X21 2 ðn� 1=2Þp
X22 2; n – 0 np

1; n = 0
X23 2½b2

n þ B2
2�=½b2

n þ B2
2 þ B2� bn tanðbnÞ ¼ B2
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7. Conclusion

We have presented a unified theory for transient heat transfer
in flux-base fins for three tip conditions. The method may be easily
extended to fins with other base conditions. For the particular case
of a straight fin with an insulated tip, we have presented a quasi-
steady theory in the form of a simple, non-series expression. We
expect that the quasi-steady approach could be applied to other
transient-fin geometries with an insulated tip, for example the ra-
dial fin or other tapered fins for which exact analytical expressions
are difficult or unavailable.

A comparison with an exact series solution for the fin transient
shows that the quasi-steady theory is accurate within 4% for
dimensionless times greater than 0.35 for small values of the fin
parameter M. For M > 1 the accurate range extends to earlier
dimensionless times. The accuracy increases for large dimension-
less times, where the sensitivity to heat transfer coefficient is
largest. The quasi-steady theory is simple and efficient for comput-
ing numerical values compared to the exact series solution (33
times faster).

The quasi-steady theory lends itself to repetitive calculations,
such as those required for parameter estimation of heat transfer
coefficients. Temperatures measured in a transient heating
experiment, carried out on a non-rotating railroad roller bear-
ing, were used to find the heat transfer coefficient by a least-
square fit comparison with the quasi-steady theory. The results
show that the quasi-steady fin model is a simple way to find
heat transfer coefficients associated with heat loss from the
outside of the bearing. The heat transfer coefficients obtained
by this method are intended for future use as an external
boundary condition for more elaborate thermal models of this
type of bearing.

Appendix A. Transient fin, exact solution

In this appendix, the series solution for the transient tempera-
ture in a flux-base fin is developed by the method of Green’s
functions.

First, a transformation [36] is used to remove the fin term from
the heat conduction equation. Let

T � Te ¼We�m2at ð25Þ

and then transform Eq. (1)–(4) to give

o2W
ox2 ¼

1
a

oW
ot

; 0 < x < L ð26Þ

at t ¼ 0; Wðx;0Þ ¼ 0 ð27Þ

at x ¼ 0; �k
oW
ox
¼ qoem2at ð28Þ

at x ¼ L; k2
oW
ox
þ h2W ¼ 0 ð29Þ

This transformed problem may be solved by the method of Green’s
functions in the form [6, p. 165]

Wðx; tÞ ¼ a
k

Z t

t0¼0
qoem2at0Gðx; tjx0 ¼ 0; t0Þdt0 ð30Þ

The Green’s function associated with function W is that for a plane
wall, given by [32]

Gðx; tjx0; t0Þ ¼ X0ð0ÞX0ð0Þ
N0

þ
X1
n¼1

XnðxÞXnðx0Þ
NnðbnÞ

e�b2
naðt�t0 Þ=L2 ð31Þ

The first term (for n ¼ 0) is needed only for a type 2 (insulated)
boundary at x ¼ L. Eigenfunctions Xn, eigenvalues bn, and norm Nn

are determined by the boundary conditions on the fin. For the
flux-base fins of interest here, the eigenfunctions are

XnðbnÞ ¼ cosðbnx=LÞ ð32Þ

and the eigenvalues and norms are given in Table 2. The number
system in Table 2 for the three cases listed is X2J where J ¼ 1, 2,
or 3 to represent tip conditions of the first kind (temperature), sec-
ond kind (insulated), or third kind (convection), respectively.

After the time integral in Eq. (30) is evaluated, the transforma-
tion in Eq. (25) can be reversed to find temperature T in the form

Tðx; tÞ � Te ¼
qoL
k

L
N0

1� e�m2at

m2L2

 !
þ qoL

k

X1
n¼1

L
Nn

� cosðbnx=LÞ
ðm2L2 þ b2

nÞ
1� exp½�ðm2L2 þ b2

nÞat=L2�
h i

ð33Þ

Again, the first term is only used when the fin tip is insulated (See
Kraus et al. [10, p. 765] for an independent derivation of the
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insulated-tip case). The above expression, with the eigenvalues and
norms given in Table 2, is limited to fins with a specified heat flux at
the base (x ¼ 0). However, the same approach could be used for fins
with other base conditions with the appropriate plane-wall Green’s
function. The plane-wall Green’s functions for the temperature-base
fin (type 1 boundary at x ¼ 0) and the fin with the base temperature
applied through a contact conductance (type 3 boundary at x ¼ 0)
are available elsewhere (see [6], Appendix X or [32]).
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